$$
\text { iso }-\mathrm{C}_{4} \mathrm{H}_{22} \mathrm{~B}_{18}
$$

$1 \cdot 14$ (2) $\AA$ and the $\mathrm{C}-\mathrm{H}$ bond lengths are both 0.95 (2) $\AA$. The shortest intermolecular $\mathrm{H}-\mathrm{H}$ distance is 2.49 (2) $\AA$.

Table 3. Bond distances $(\AA)$ and angles $\left({ }^{\circ}\right)$
(a) Distances in the nido- $\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{~B}_{8}$ moiety

| $\mathrm{B}\left(1^{\prime}\right)-\mathrm{B}\left(2^{\prime}\right)$ | $1.752(3)$ | $\mathrm{B}\left(3^{\prime}\right)-\mathrm{B}\left(8^{\prime}\right)$ | $1.774(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{B}\left(1^{\prime}\right)-\mathrm{B}\left(3^{\prime}\right)$ | $1.789(2)$ | $\mathrm{B}\left(4^{\prime}\right)-\mathrm{B}\left(8^{\prime}\right)$ | $1.788(2)$ |
| $\mathrm{B}\left(1^{\prime}\right)-\mathrm{B}\left(4^{\prime}\right)$ | $1.782(2)$ | $\mathrm{B}\left(4^{\prime}\right)-\mathrm{B}\left(9^{\prime}\right)$ | $1.727(2)$ |
| $\mathrm{B}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ | $1.657(2)$ | $\mathrm{B}\left(4^{\prime}\right)-\mathrm{B}\left(10^{\prime}\right)$ | $1.814(2)$ |
| $\mathrm{B}\left(1^{\prime}\right)-\mathrm{B}\left(10^{\prime}\right)$ | $1.805(2)$ | $\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$ | $1.457(2)$ |
| $\mathrm{B}\left(2^{\prime}\right)-\mathrm{B}\left(3^{\prime}\right)$ | $1.758(2)$ | $\mathrm{C}\left(5^{\prime}\right)-\mathrm{B}\left(10^{\prime}\right)$ | $1.751(2)$ |
| $\mathrm{B}\left(2^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ | $1.709(3)$ | $\mathrm{C}\left(6^{\prime}\right)-\mathrm{B}\left(7^{\prime}\right)$ | $1.508(2)$ |
| $\left.\mathrm{B} 2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$ | $1.691(2)$ | $\mathrm{B}\left(7^{\prime}\right)-\mathrm{B}\left(8^{\prime}\right)$ | $1.937(2)$ |
| $\mathrm{B}\left(2^{\prime}\right)-\mathrm{B}\left(7^{\prime}\right)$ | $1.813(2)$ | $\mathrm{B}\left(8^{\prime}\right)-\mathrm{B}\left(9^{\prime}\right)$ | $1.782(2)$ |
| $\mathrm{B}\left(3^{\prime}\right)-\mathrm{B}\left(4^{\prime}\right)$ | $1.815(2)$ | $\mathrm{B}\left(8^{\prime}\right)-\mathrm{B}(3)$ | $1.681(2)$ |
| $\mathrm{B}\left(3^{\prime}\right)-\mathrm{B}\left(7^{\prime}\right)$ | $1.777(2)$ | $\mathrm{B}\left(9^{\prime}\right)-\mathrm{B}\left(10^{\prime}\right)$ | $1.783(2)$ |

(b) Selected angles in the nido $-\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{~B}_{8}$ moiety involving C atoms

| $\mathrm{B}\left(2^{\prime}\right)-\mathrm{B}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ | $60 \cdot 1(1)$ | $\mathrm{B}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{B}\left(10^{\prime}\right)$ | $63 \cdot 9(1)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}\left(5^{\prime}\right)-\mathrm{B}\left(1^{\prime}\right)-\mathrm{B}\left(10^{\prime}\right)$ | $60.6(1)$ | $\mathrm{B}\left(2^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$ | $64.0(1)$ |
| $\mathrm{B}\left(1^{\prime}\right)-\mathrm{B}\left(2^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ | $57 \cdot 2(1)$ | $\mathrm{B}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ | $65 \cdot 3(1)$ |
| $\mathrm{C}\left(5^{\prime}\right)-\mathrm{B}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$ | $50 \cdot 8(1)$ | $\mathrm{B}\left(2^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)-\mathrm{B}\left(7^{\prime}\right)$ | $68 \cdot 8(1)$ |
| $\mathrm{C}\left(6^{\prime}\right)-\mathrm{B}\left(2^{\prime}\right)-\mathrm{B}\left(7^{\prime}\right)$ | $50.9(1)$ | $\mathrm{B}\left(2^{\prime}\right)-\mathrm{B}\left(7^{\prime}\right)-\mathrm{C}\left(6^{\prime}\right)$ | $60 \cdot 4(1)$ |
| $\mathrm{B}\left(1^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)-\mathrm{B}\left(2^{\prime}\right)$ | $62.7(1)$ | $\mathrm{B}\left(1^{\prime}\right)-\mathrm{B}\left(10^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ | $55 \cdot 5(1)$ |

(c) Distances in the closo $-\mathrm{C}_{2} \mathrm{H}_{11} \mathrm{~B}_{10}$ moiety

| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.622(2)$ | $\mathrm{B}(5)-\mathrm{B}(6)$ | $1.764(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(1)-\mathrm{B}(3)$ | $1.728(2)$ | $\mathrm{B}(5)-\mathrm{B}(9)$ | $1.772(3)$ |
| $\mathrm{C}(1)-\mathrm{B}(4)$ | $1.690(2)$ | $\mathrm{B}(5)-\mathrm{B}(10)$ | $1.769(3)$ |
| $\mathrm{C}(1)-\mathrm{B}(5)$ | $1.701(2)$ | $\mathrm{B}(6)-\mathrm{B}(10)$ | $1.758(3)$ |
| $\mathrm{C}(1)-\mathrm{B}(6)$ | $1.712(2)$ | $\mathrm{B}(6)-\mathrm{B}(1)$ | $1.773(3)$ |
| $\mathrm{C}(2)-\mathrm{B}(3)$ | $1.728(2)$ | $\mathrm{B}(7)-\mathrm{B}(8)$ | $1.765(3)$ |
| $\mathrm{C}(2)-\mathrm{B}(6)$ | $1.721(2)$ | $\mathrm{B}(7)-\mathrm{B}(11)$ | $1.778(2)$ |
| $\mathrm{C}(2)-\mathrm{B}(7)$ | $1.685(2)$ | $\mathrm{B}(7)-\mathrm{B}(12)$ | $1.767(2)$ |
| $\mathrm{C}(2)-\mathrm{B}(11)$ | $1.701(2)$ | $\mathrm{B}(8)-\mathrm{B}(9)$ | $1.787(3)$ |
| $\mathrm{B}(3)-\mathrm{B}(4)$ | $1.785(2)$ | $\mathrm{B}(8)-\mathrm{B}(12)$ | $1.786(2)$ |
| $\mathrm{B}(3)-\mathrm{B}(7)$ | $1.788(2)$ | $\mathrm{B}(9)-\mathrm{B}(10)$ | $1.780(2)$ |
| $\mathrm{B}(3)-\mathrm{B}(8)$ | $1.776(2)$ | $\mathrm{B}(9)-\mathrm{B}(12)$ | $1.772(3)$ |
| $\mathrm{B}(4)-\mathrm{B}(5)$ | $1.783(3)$ | $\mathrm{B}(10)-\mathrm{B}(11)$ | $1.766(3)$ |
| $\mathrm{B}(4)-\mathrm{B}(8)$ | $1.766(3)$ | $\mathrm{B}(10)-\mathrm{B}(12)$ | $1.787(3)$ |
| $\mathrm{B}(4)-\mathrm{B}(9)$ | $1.768(2)$ | $\mathrm{B}(11)-\mathrm{B}(12)$ | $1.762(3)$ |

## References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1966). NRC Crystallographic Programs for the IBM/ 360 system. World List of Crystallographic Computer Programs. Utrecht: Oosthoek.
Colquhoun, M. M., Greenhough, T. J. \& Wallbridge, M. G. H. (1980). J. Chem. Soc. Chem. Commun. pp. 192-194.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Janoušek, Z. (1973). Study of Oxidation of the 7,8-Dicarba-nido-dodecahydroundecaborate(1-) Anion and Resolution of Constitutions of Prepared Compounds. Thesis, Institute of Inorganic Chemistry, Řež, near Prague, Czechoslovakia.
Janoušek, Z., Heřmánek, S., Plešek, J. \& Štíbr, B. (1974). Collect. Czech. Chem. Commun. 39, 2363-2373.

Janoušek, Z., Plešek, J. \& Plzák, Z. (1979). Collect. Czech. Chem. Commun. 44, 2904-2907.
Janoušek, Z., Plešek, J., Štíbr, B. \& Heřmánek, S. (1982). Collect. Czech. Chem. Commun. To be published.

Jung, C. W. \& Hawthorne, M. F. (1980). J. Am. Chem. Soc. 102, 3024-3032.
Kasper, J. S., Lucht, C. M. \& Harker, D. (1950). Acta Cryst. 3, 436-455.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J. P. (1974). mULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
Plešek, J. Heřmánek, S. (1974). Pure Appl. Chem. 39, 431-454.
Sklenář, I. \& Hašek, J. (1978). Z. Kristallogr. 147, 147-148.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Štíbr, B., Plešek, J. \& Heřmánek, S. (1974). Collect. Czech. Chem. Commun. 39, 1805-1809.
Subrtová, V., Línek, A. \& Has̆ek, J. (1980). Acta Cryst. B36, 858-861.

Acta Cryst. (1982). B38, 3149-3151

# 1,4-Bis(isopropylamino)anthraquinone 

By C. J. Brown and G. R. Mitchell<br>Department of Metallurgy and Materials Engineering, City of London Polytechnic, Central House, Whitechapel High Street, London E1 7PF, England

(Received 12 February 1982; accepted 28 June 1982)


#### Abstract

C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}, M_{r}=322 \cdot 18\), trigonal, $R \overline{3}, a=$ 15.030 (5) $\AA, \alpha=106.4(1)^{\circ}, V=2872.65 \AA^{3} D_{m}=$ $1 \cdot 165, D_{c}=1.118 \mathrm{Mg} \mathrm{m}{ }^{-3}, Z=6, \lambda(\mathrm{Mo})=$ $0.71069 \AA \AA, \mu(\mathrm{Mo} K \alpha)=0.079 \mathrm{~mm}^{-1}, F(000)=1032$,


$R=0.056$ for 2307 observed reflexions. The structure comprises discrete molecules with two internal hydrogen bonds $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ per molecule but no intermolecular interactions other than van der Waals forces.

Introduction. The title compound is a blue pigment of the solvent anthraquinone class (CI 61551). Our sample was supplied by Imperial Chemical Industries Limited (trade name 'Waxoline Blue') and was purified by repeated extraction with water to remove inorganic salts and then recrystallized from xylene. Two habits dominated, tabular and acicular, both exhibiting $60^{\circ}$ angles between faces. Elemental analysis gave C 75.25 . H 7.02, N $8 \cdot 26 \%$ (required for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C 74.51 , H 6.88, N $8.69 \%$ ).

Unit-cell dimensions were obtained in the first instance from Weissenberg photographs which indicated a hexagonal lattice and only reflexions with $(-h+k+l)=3 n$. The parameters were subsequently refined from diffractometer measurements by least squares giving $a$ (hex) $=24 \cdot 08$ (7) and $c$ (hex) $=$ $17 \cdot 15$ (3) $\AA$. From these values the trigonal cell shown above was deduced. Of the five permissible rhombohedral space groups the probable choice lay between $R \overline{3}$ and $R \overline{3} m$ by virtue of the pyroelectric test and a statistical analysis of the intensity data; the first of these, $R \overline{3}$, was preferred and subsequently confirmed by the results.

Intensity measurements were obtained from a needle-shaped crystal, $4.0 \times 0.25 \times 0.25 \mathrm{~mm}$, mounted about [111] on a Stoe Stadi-2 diffractometer using Weissenberg geometry and $\omega$ scans. 3776 independent reflexions were measured from the zero and 17 levels with $2 \theta<60^{\circ}$. Of these, 2307 were significantly above background and were used in the structure determination and refinement. The data were corrected for Lp effects but not for absorption which was negligible for Mo $K \alpha$.

The structure was solved by MULTAN (Main, Lessinger, Woolfson, Germain \& Declercq, 1978). The $E$ map showed 22 of the 24 non-H atoms; two C atoms were missing from an isopropyl group because the SEARCH scan used in MULTAN did not extend far enough in the $y$ direction. These missing atoms were supplied by calculation. There were three permissible orientations which maintained a tetrahedral distribution around $\mathrm{C}(18)$ and the usual torsion angles about the $\mathrm{C}(18)-\mathrm{N}(2)$ bond; the arrangement giving the best structure-factor agreement was accepted and this choice was confirmed both by the subsequent refinement and by the low value $\left(0.3 \mathrm{e} \AA^{-3}\right)$ of the residual electron density.

Difference Fourier syntheses failed to locate precise positions for the H atoms so these were calculated $(\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ both $=1.08 \AA$, and appropriate torsion angles at the methyl groups) and included in the structure-factor calculations with $B_{\text {iso }}=6 \cdot 0 \AA^{2}$ for the trigonally bonded and $8.0 \AA^{2}$ for the tetrahedral. The weighting scheme in the least-squares refinement, which was carried out on a DEC-10 computer using the NRC suite of programs (Ahmed, 1970), was $w^{\prime}=(3 \cdot 0+F+$ $\left.0.01 F^{2}\right)^{-1}$ and, after a number of cycles first with $B_{\text {iso }}$

Table 1. Final atomic parameters and e.s.d.'s

|  | $B_{\mathrm{eq}}=\frac{1}{3}\left(B_{11}+B_{22}+B_{33}\right)$ where $B_{11}=4 \beta_{11} /\left(a^{*}\right)^{2}$ etc. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $\cdots$ | $z$ | $B_{\text {eq }}\left(\AA^{2}\right)$ |
| C(1) | $0 \cdot 3364$ (2) | -0.0452 (2) | $0 \cdot 6075$ (2) | 4.02 (12) |
| C(2) | 0.3172 (2) | -0.1224 (2) | $0 \cdot 6464$ (2) | 4.86 (15) |
| C(3) | 0.3910 (2) | -0.1487 (2) | 0.6924 (2) | $4 \cdot 57$ (14) |
| C(4) | 0.4943 (2) | -0.0975 (2) | 0.7090 (2) | $4 \cdot 35$ (14) |
| C(5) | 0.7418 (2) | 0.1736 (2) | 0.6731 (2) | $4 \cdot 55$ (14) |
| C(6) | 0.7650 (2) | 0.2511 (2) | 0.6362 (2) | 5.61 (14) |
| C(7) | 0.6860 (2) | 0.2694 (2) | $0 \cdot 5808$ (2) | $4 \cdot 63$ (14) |
| C(8) | 0.5867 (2) | 0.2171 (2) | 0.5638 (2) | $4 \cdot 00$ (12) |
| $\mathrm{C}(9)$ | 0.4586 (2) | $0 \cdot 0855$ (2) | $0 \cdot 5839$ (2) | $3 \cdot 25$ (11) |
| C(10) | 0.6221 (2) | $0 \cdot 0409$ (2) | 0.6953 (2) | $4 \cdot 00$ (12) |
| C(11) | 0.6433 (2) | $0 \cdot 1216$ (2) | $0 \cdot 6568$ (2) | $3 \cdot 66$ (11) |
| C(12) | 0.5658 (2) | 0.1421 (2) | $0 \cdot 6022$ (2) | $3 \cdot 22$ (11) |
| C(13) | 0.4368 (2) | 0.0064 (2) | $0 \cdot 6228$ (2) | 3.08 (11) |
| C(14) | $0 \cdot 5175$ (2) | -0.0165 (2) | 0.6760 (2) | 3.77 (12) |
| C(15) | 0.1512 (2) | -0.0790 (2) | 0.5364 (3) | $5 \cdot 62$ (18) |
| C(16) | $0 \cdot 1318$ (3) | -0.0349 (3) | 0.6321 (3) | $8 \cdot 28$ (27) |
| C(17) | 0.0863 (2) | -0.0667 (3) | 0.4471 (3) | $6 \cdot 99$ (23) |
| C(18) | $0 \cdot 5522$ (3) | -0.2149 (3) | 0.7800 (3) | $6 \cdot 19$ (22) |
| C(19) | $0 \cdot 5123$ (3) | -0.3080 (3) | $0 \cdot 6823$ (4) | $7 \cdot 32$ (27) |
| C (20) | $0 \cdot 6494$ (3) | -0.2023 (4) | $0 \cdot 8562$ (3) | $8 \cdot 89$ (35) |
| N(1) | $0 \cdot 2586$ (2) | -0.0273 (2) | 0.5559 (2) | $4 \cdot 52$ (12) |
| N(2) | $0 \cdot 5680$ (2) | -0.1226 (2) | 0.7587 (2) | $4 \cdot 80$ (13) |
| O(1) | 0.3920 (1) | $0 \cdot 1078$ (1) | 0.5344 (1) | $4 \cdot 53$ (10) |
| O(2) | $0 \cdot 6949$ (1) | $0 \cdot 0241$ (2) | 0.7429 (2) | $5 \cdot 30$ (10) |

and later with $B_{i j}$, the parameter shifts were all less than $0 \cdot 5 \sigma$. The final positional and isotropic thermal parameters are given in Table 1.*

Discussion. The numbering of the atoms used in this analysis is shown in Fig. I, and the bond lengths and angles are given in Table 2. The geometry of the molecule is similar to that found in other anthraquinone derivatives (Bailey \& Brown, 1967). The shortening of $C(2)-C(3)$ to $1 \cdot 354 \AA$ was unexpected and may be due to conjugation resulting from the position of the bond between $C(1)-N(1)$ and $C(4)-N(2)$ both of which are shortened by the interaction of the N lone-pair electrons with the $\pi$ electrons of the anthraquinone ring. The lengthening of $C(13)-C(14)$ to $1.441 \AA$ is not explained, but it is noteworthy that it is the diaminosubstituted ring $|\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(14), \mathrm{C}(13)|$ which contains the abnormal bond lengths, while the unsubstituted ring $[\mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(12)$, $\mathrm{C}(11)]$ is necessarily much more regular.

The equation of the plane of the anthraquinone ring is $0.3642 X-0.3626 Y-0.8578 Z+4.4071=0$. The average deviation of atoms $\mathrm{C}(1)-(3)$ and $\mathrm{C}(5)-(14)$ from this mean plane is 0.021 (2) $\AA$ : $C(4)$ is 0.074 (3) and $N(2) 0 \cdot 107(2) \AA$ out of the plane. Evidently the

[^0]

Fig. 1. Diagram of the molecule showing numbering of atoms.
Table 2. Bond lengths $(\AA)$ and inter-bond angles $\left({ }^{\circ}\right)$

| $\mathrm{C}(1)-\mathrm{C}(2) \quad 1$. | 1.435 (4) | $\mathrm{C}(10)-\mathrm{C}(14) \quad 1.4$ | 1.461 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(2)-\mathrm{C}(3) \quad 1$. | 1.354 (4) | $\mathrm{C}(13)-\mathrm{C}(9) \quad 1.4$ | 1.463 (3) |
| $\mathrm{C}(3)-\mathrm{C}(4) \quad 1.4$ | 1.436 (4) | $\mathrm{C}(9)-\mathrm{C}(12) \quad 1.4$ | 1.495 (4) |
| $\mathrm{C}(4)-\mathrm{C}(14) \quad 1$. | 1.432 (4) | $\mathrm{C}(9)-\mathrm{O}(1) \quad 1.2$ | 1.256 (3) |
| $\mathrm{C}(14)-\mathrm{C}(13) \quad 1$. | 1.441 (3) | $\mathrm{C}(10)-\mathrm{O}(2) \quad 1.2$ | 1.259 (4) |
| $\mathrm{C}(13)-\mathrm{C}(1) \quad 1$. | 1.405 (4) | $\mathrm{C}(1)-\mathrm{N}(1) \quad 1.35$ | 1.350 (4) |
| $\mathrm{C}(5)-\mathrm{C}(6) \quad 1$. | 1.426 (4) | $\mathrm{C}(4)-\mathrm{N}(2) \quad 1.3$ | 1.363 (4) |
| $\mathrm{C}(6)-\mathrm{C}(7) \quad 1$. | 1.389 (4) | $\mathrm{N}(1)-\mathrm{C}(15) \quad 1.4$ | 1.480 (4) |
| $\mathrm{C}(7)-\mathrm{C}(8) \quad 1$. | 1.386 (4) | $\mathrm{N}(2)-\mathrm{C}(18) \quad 1.4$ | 1.479 (5) |
| $\mathrm{C}(8)-\mathrm{C}(12) \quad 1$. | 1.405 (4) | $\mathrm{C}(15)-\mathrm{C}(16) \quad 1.5$ | 1.550 (6) |
| $\mathrm{C}(12)-\mathrm{C}(11) \quad 1$. | 1.390 (4) | $\mathrm{C}(15)-\mathrm{C}(17) \quad 1.51$ | 1.514 (6) |
| $\mathrm{C}(11)-\mathrm{C}(5) \quad 1.3$ | 1.377 (4) | $\mathrm{C}(18)-\mathrm{C}(19) \quad 1.53$ | 1.531 (6) |
| $\mathrm{C}(11)-\mathrm{C}(10) \quad 1$. | 1.480 (4) | $\mathrm{C}(18)-\mathrm{C}(20) \quad 1.5$ | 1.503 (6) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 122.3 (3) | $\mathrm{C}(9)-\mathrm{C}(12)-\mathrm{C}(11)$ | 120.8 (2) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 121.6 (3) | $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(5)$ | 120.6 (2) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$ | 117.9 (2) | $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$ | 121.1 (2) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$ | 120.7 (3) | $\mathrm{C}(5)-\mathrm{C}(11)-\mathrm{C}(10)$ | 118.2 (2) |
| $\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{N}(2)$ | 121.4 (2) | $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(11)$ | 119.8 (2) |
| $\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(13)$ | ) $119.2(2)$ | $\mathrm{C}(12)-\mathrm{C}(9)-\mathrm{C}(13)$ | 118.6 (2) |
| $\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{C}(10)$ | ) 119.8 (2) | $\mathrm{C}(12)-\mathrm{C}(9)-\mathrm{O}(1)$ | 117.8 (2) |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(10)$ | 0) $120.9(2)$ | $\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{O}(1)$ | 123.6 (2) |
| $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(1)$ | ) 121.4 (2) | $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(14)$ | 118.6 (2) |
| $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(9)$ | 119.9(2) | $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{O}(2)$ | 118.7 (2) |
| $\mathrm{C}(9)-\mathrm{C}(13)-\mathrm{C}(1)$ | 118.6 (2) | $\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{O}(2)$ | 122.8 (2) |
| $\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{C}(2)$ | 117.4 (2) | $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(15)$ | 125.9 (2) |
| $\mathrm{C}(13)-\mathrm{C}(1)-\mathrm{N}(1)$ | 122.9 (2) | $\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(16)$ | 109.7 (3) |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$ | 119.6 (2) | $\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(17)$ | 108.8 (3) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | 118.5 (3) | $\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(17)$ | 111.6 (3) |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | 122.0 (3) | $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(18)$ | 126.0 (3) |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(12)$ | 118.5 (2) | $\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{C}(19)$ | $110 \cdot 5$ (3) |
| $\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{C}(11)$ | $) \quad 120 \cdot 6$ (2) | $\mathrm{N}(2)-\mathrm{C}(18)-\mathrm{C}(20)$ | 108.8 (3) |
| $\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{C}(9)$ | 118.6 (2) | $\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(20)$ | $112 \cdot 5$ (4) |

external pressures on the $C(18)-(20)$ isopropyl group are sufficient to distort the $C(4)$ region of the anthraquinone ring from true planarity. The planarity


Fig. 2. Arrangement of molecules with the same $z$ coordinates in a hexagonal unit cell around $\overline{3}$ at $\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$.
of the three six-membered rings was tested separately; the equation of (a) $\mathrm{C}(1)-(4), \mathrm{C}(14), \mathrm{C}(13)$ is $0.3335 X$ $-0.3470 Y-0.8766 Z+4.7566=0$ and the average deviation $0.015 \AA$. The equation of (b) $\mathrm{C}(9)-(14)$ is $0.3702 X-0.3599 Y-0.8564 Z+4.3782=0$ and the average deviation $0.008 \AA$. The equation of $(c)$ $\mathrm{C}(5)-(8), \mathrm{C}(12), \mathrm{C}(11)$ is $0.3734 X-0.3778 Y$ $0.8472 Z+4.2501=0$ and the average deviation $0.005 \AA$. The dihedral angles between planes $(a)$ and $(b),(b)$ and $(c)$, and $(a)$ and (c) are respectively $2.51(5), 1 \cdot 16(5)$, and $3.34(5)^{\circ}$. It is evident that ring (a) shows the most departure from planarity; if ring (b) is taken as the norm, then $C(1)$ is -0.054 (2) $\AA$ out of the plane and $C(4)$ is +0.073 (3) $\AA$ out. This is consistent with the view that the two isopropyl groups are tending to distort ring (a) into a modified chair shape by pulling $C(1)$ and $C(4)$ in opposite directions.

Fig. 2 shows the distribution of three molecules whose corresponding atoms all have the same $z$ (hexagonal) coordinates around one of the $\overline{3}$ axes; there are, of course, another three related by the $\overline{3}$ inversion centre.

## References

Ahmed, F. R. (1970). Crystallographic Computing, pp. 309-311. Copenhagen: Munksgaard.
Bailey, M. \& Brown, C. J. (1967). Acta Cryst. 22, 392-396, 488-492, 493-497.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declerce, J. P. (1978). multan. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.


[^0]:    * Lists of structure factors. H-atom parameters and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 38040 ( 20 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography. 5 Abbey Square. Chester CHI 2HU, England.

